Inf Syst Front
DOI10.1007/510796-009-9179-7

On compliance checking for clausal constraints

in annotated process models

Jorg Hoffmann - Ingo Weber - Guido Governatori

© Springer Science + Business Media, LLC 2009

Abstract Compliance management is important in sev-
eral industry sectors where there is a high incidence
of regulatory control. It must be ensured that business
practices, as reflected in business processes, comply
with the rules. Such compliance checks are challenging
due to (1) the different life cycles of rules and processes,
and (2) their disparate representations. (1) requires
retrospective checking of process models. To address
(2), we herein devise a framework where processes are
annotated to capture the semantics of task execution,
and compliance is checked against a set of constraints
posing restrictions on the desirable process states. Each
constraint is a clause, i.e., a disjunction of literals. If
a process can reach a state that falsifies all literals of
one of the constraints, then that constraint is violated
in that state, and indicates non-compliance. Naively,
such compliance can be checked by enumerating all
reachable states. Since long waiting times are unde-
sirable, it is important to develop efficient (low-order

J. Hoffmann (X))

SAP Research, Vincenz-Priessnitz-Str. 1,
76131 Karlsruhe, Germany

e-mail: joe.hoffmann@sap.com

I. Weber

School of Computer Science & Engineering,

The University of New South Wales, Sydney, Australia
e-mail: ingo.weber@cse.unsw.edu.au

G. Governatori

Queensland Research Laboratory,
NICTA, Brisbane, Australia

e-mail: guido.governatori@nicta.com.au

Published online: 23 May 2009

polynomial time) algorithms that (a) perform exact
compliance checking for restricted cases, or (b) perform
approximate compliance checking for more general
cases. Herein, we observe that methods of both kinds
can be defined as a natural extension of our earlier work
on semantic business process validation. We devise
one method of type (a), and we devise two methods
of type (b); both are based on similar restrictions to
the processes, where the restrictions made by methods
(b) are a subset of those made by method (a). The
approximate methods each guarantee either of sound-
ness (finding only non-compliances) or completeness
(finding all non-compliances). We describe how one
can trace the state evolution back to the process activ-
ities which caused the (potential) non-compliance, and
hence provide the user with an error diagnosis.

Keywords Compliant process design -
Compliance checking - Business process design -
Formal process verification

1 Introduction

Compliance management is an area of increasing im-
portance in several industry sectors where there is a
high incidence of regulatory control e.g., financial ser-
vices, gaming, and health care. Ensuring that business
practices reflected in business process models are com-
pliant to required regulations (existing and new) is a
highly challenging task due to the following reasons.
First, the life cycles of the two (regulatory obliga-
tions vs. business strategy) are not aligned in terms of
time, governance, or stakeholders (Sadiq et al. 2007)
and hence compliance requirements cannot simply be

@ Springer

Inf Syst Front

incorporated into the initial design of process models.
Second, conceptually faithful specifications for compli-
ance rules and process models respectively are funda-
mentally different from a representational point of view
(zur Muehlen et al. 2007), thus making it difficult to
provide comparison methods. Herein, we propose to
provide retrospective checking of process models in ac-
knowledgment of the disparate life cycles as mentioned
above. That is (a) to check the compliance of a new
or altered process against the compliance rules, and
(b) check the whole process repository against changed
compliance rules, e.g., when new regulations come into
being.

Compliance rules in our approach are represented
as a constraints base. That constraints base is in con-
junctive normal form: it is a conjunction (logical “and”)
of clauses, where each clause is a disjunction (logical
“or”) of literals. Literals are atomic logical statements,
i.e., predicate symbols that may be positive or negated.
The literals may contain variables. These are quantified
universally, and range over the entities of interest at
process execution time (e.g., in a process dealing with
cheques, the constraints will be stated to hold for
all cheques). Each clause is a constraint on the states
that are desirable as per the compliance rules: if a
state does not satisfy the clause, then that state is non-
compliant. Due to the outer conjunction, all clauses
must be satisfied. For example, say a cheque must

Fig.1 An overview of our

framework Legalese

Formalisation

< b

Constraint base

clause;
clause,
clauses
clause,
clauses
clauseg
clause,
clauseg
clauseg

@ Springer

Comparison

be signed by any two of the people authorized to sign it.
Say three people are authorized to sign cheques,
Henning, Leo, and Dietmar. This corresponds to the
rule Vx : cheque(x) — sign(x, Henning, Leo) V sign(x,
Henning, Dietmar) Vv sign(x, Leo, Dietmar), which is
the same as Vx : —~cheque(x) Vv sign(x, Henning, Leo) v
sign(x, Henning, Dietmar) Vv sign(x, Leo, Dietmar).

Clearly, the complexity of compliance rules in gen-
eral necessitates a more expressive language (see
e.g., Governatori and Milosevic 2006) than this form
of constraints bases. Our aim in this paper is not to
provide a fully-fledged framework for compliance, but
rather to develop computationally efficient compliance
checking methods for this particular restricted form of
compliance.

Figure 1 gives an overview of our framework.
Processes are modeled in terms of a typical workflow
language, featuring task nodes (the activities carried
out inside the process) as well as parallel splits/joins
and xor splits/joins to model the control flow. Such
a model specifies only which sequences of activities—
which execution paths—may occur; it cannot model
more subtle or indirect dependencies between the ac-
tivities. To cater for the latter, we allow semantic
annotations. Tasks are annotated with preconditions
and effects, which are conjunctions of logical literals,
formulated in the terms of an ontology that axiomatizes
the underlying business domain.

Annotated
process model

Logical state
summaries

Inf Syst Front

Given the semantic annotations, execution paths of
the process traverse states that do not only define which
edges of the process are active (carry a token), but also
define a “logical state”, i.e., how the logical propositions
are interpreted. In the “Logical state summaries” part
of Fig. 1, I*(e;) and U*(e;) denote sets of literals which
characterize particular properties of execution paths,
relative to edges e;. Namely, the literals in I*(e;) are
guaranteed to be true whenever e¢; is active (so those sets
correspond to the intersection of the logical states at ¢;),
and the literals in U*(e;) might be true when e; is active
(so those sets correspond to the union of the logical
states at ¢;). I* and U* are computed as part of our
compliance checking algorithms (more details below).

Note that the possibility to semantically annotate
the process already provides opportunities for certain
forms of compliance checking, even without introduc-
ing a constraints base: e.g., if, by a compliance rule
expressing an obligation, activity A must always be
performed prior to an activity B, then we can give B a
(new) precondition p and include p into A’s effect. The
process is then compliant iff B’s precondition is always
guaranteed to be true.

We leave the detailed exploration of encoding
methods as above for future work. Herein, we focus
on clausal constraints—disjunctive compliance rules—
which are more powerful. They enable the modeler
to specify that one out of a number of conditions must
always be satisfied—by contrast, preconditions for-
mulate only conjunctive rules, specifying that all of
a number of conditions must always be satisfied. An
example of a disjunctive compliance rule has been given
above already, where we have three people authorized
to sign cheques, and any cheque must be signed by two
of them, yielding the clause Vx : —cheque(x) V sign(x,
Henning, Leo) V sign(x, Henning, Dietmar) Vv sign(x,
Leo, Dietmar).

The compliance rules are checked against the logical
states that can be traversed by the process. A naive way
of checking compliance is hence to enumerate all those
states. Clearly, given that the number of states is (in
general) exponential in the size of the process, such an
approach is not desirable. A human modeler will not
tolerate long waiting times during process modeling,
and checking the compliance of a whole process repos-
itory against an altered constraints base may become
completely infeasible if every single process involves a
state enumeration. The question hence is: do restricted
cases exist where we can check compliance efficiently?
And can we devise approximation techniques for more
general cases?

We herein give positive answers to both ques-
tions. We leverage on an algorithm, I-propagation, that

we developed in previous work (Weber et al. 2008).
I-propagation was originally intended for validating a
certain property of semantically annotated processes,
namely whether or not all task nodes are “executable”.
A task node is executable if, whenever the task is
activated by the control-flow, its precondition literals
are guaranteed to be satisfied. Checking executability is
essentially like checking compliance with trivial clauses
of length 1 (unit clauses). Herein, we provide ways of
extending the algorithm to deal with longer, non-trivial,
clauses.

I-propagation runs in polynomial time and, for a
particular restricted class of processes which we call
basic processes, computes exactly the sets of literals that
are necessarily true at particular points during process
execution: namely, the I* sets in Fig. 1 (the U* sets
can be derived easily from /*). Basic processes have no
loops, no effect conflicts (no parallel task nodes with
contradicting effect annotations), the ontology axioms
are all binary clauses (disjunctions of at most two liter-
als), and all task nodes are executable.

Regarding binary axioms and executability, we
proved that those restrictions are necessary for com-
putational efficiency: determining the necessarily true
literals is NP-hard or worse if we relax these restrictions
(Weber et al. 2008).! For effect conflicts, it is an open
question whether or not they could be handled effi-
ciently. Note that parallel task nodes with conflicting ef-
fects (such as write operations onto the same database)
are often not sensible, namely in applications where
parallel nodes might execute at the same time point, or
where the outcome of the process should not depend on
the order of execution of parallel tasks. Nevertheless,
there may be applications in which effect conflicts are
intended, and compliance needs be checked in their
presence. Figuring out how to do so is a topic for future
work.

Regarding loops, as stated, the original definition of
basic processes (Weber et al. 2008) disallows them. In
the meantime, however, in other work we have man-
aged to overcome this restriction, devising an extension
of I-propagation that correctly handles basic processes
with loops, in polynomial time. This extension is en-
tirely orthogonal to the techniques we introduce herein
for handling non-trivial clauses. In effect, our results
generalize effortlessly. We do not include a formal

Tt may seem odd that executability is a prerequisite, since
I-propagation was designed to check this same property. The
latter can, in fact, be done, by a certain contra-position argument
(outlined in Section 3 where we explain I-propagation).

@ Springer

Inf Syst Front

treatment of loops, since that would amount to noth-
ing but notational clutter. The extended I-propagation
algorithm handles “structured loops” only, formalized
in terms of (repeatable) sub-processes, so that the over-
all process takes the form of a tree of sub-processes.
Since the issues of loops and non-trivial clauses are
orthogonal, none of this additional formalism is of any
relevance to the results contained herein. Our results
hold as stated also for processes with structured loops.
We will outline why this is so.

Our compliance checking methods are based on two
observations:

— If a clause C is non-contradicted—there exists no
task node effect invalidating any of C’s literals—
then we can compile compliance with C into com-
pliance with a unit clause C’, and hence re-use
I-propagation for exact compliance checks. It is
important to note here that such a situation is not
uncommon; in the cheque example above, e.g., one
would not expect to have a task node with effect
—cheque(x) (saying that x is no longer a cheque),
and neither would one expect to have tasks that
“un-sign” a cheque.

— For the more general case of contradicted clauses,
we can still exploit the information provided by
I-propagation, namely in terms of two approxi-
mative tests. The first of those essentially checks
whether all literals of a clause are necessarily false.
This method is sound but not complete (it guaran-
tees to find only non-compliances, but not to find
all non-compliances). The other method checks
whether none of the literals of a clause is necessarily
true. This method is complete but not sound.

All the methods inherit the restrictions of I-
propagation, i.e., they handle basic processes.
However, the approximate methods do not require
executability—as we show herein, I-propagation still
gives a certain guarantee of conservativeness without
this prerequisite; that guarantee suffices to obtain
soundness respectively completeness as desired.

In this paper we define the compliance checking
methods and prove their relevant theoretical proper-
ties. We further describe how one can trace the state
evolution back to the process activities which caused
the non-compliance, and hence provide the user with a
diagnosis facility. Detailed empirical evaluation of the
proposed methods is beyond the scope of this paper.
We remark that we have a prototypical implementa-
tion of I-propagation, which as expected exhibits fine
runtime behavior. For example, the prototype handles
a non-trivial process with 40 nodes and 46 edges within
fractions of a second.

@ Springer

Section 2 introduces our formalism for semantically
annotated processes, as well as our formalization of
constraints bases. Section 3 explains the I-propagation
algorithm we build on. Section 4 presents our methods
for compliance checking, and Section 5 contains our
diagnosis methods. Section 6 discusses related work,
Section 7 concludes.

2 Annotated business processes and constraint bases

In this section we give our definitions regarding an-
notated process graphs and the constraints on their
behavior, starting with the former.

2.1 Annotated business processes

We introduce a formalism for business processes whose
tasks are annotated with logical preconditions and ef-
fects. This formalism is the basis of our work, since it
allows us to model the behavior of process activities,
and hence of the overall process, at a level that is
fine-grained enough to sensibly check for the kind of
compliance we target in this work. We first introduce
our notions regarding control-flow, then we discuss the
semantic annotations.

2.1.1 Control-flow

Our business processes consist of different kinds of
nodes (task nodes, split nodes, ...) connected with
edges. We will henceforth refer to this kind of graphs
as process graphs. For the sake of readability, we first
introduce non-annotated process graphs. This part of
the definition is, without any modification, adopted
from the workflow literature, following closely the ter-
minology and notation used in Vanhatalo et al. (2007).

Definition 1 A process graph is a directed graph G =
N, €), where N is the disjoint union of {ng, n,} (start
node, end node), N (task nodes), Nps (parallel splits),
Npy (parallel joins), Nxs (xor splits), and Nx; (xor
joins). For n e N, IN(n)/ OUT (n) denotes the set of
incoming/outgoing edges of n. We require that: for each
split node n, |[IN(n)| =1 and |OU T (n)| > 1; for each
joinnode n, |[IN(n)|>1and |OUT(n)|=1;for eachn €
N7, |[IN(n)| =1and |OUT (n)| = 1;for ny, |[IN(n)| =0
and |OUT(n)| =1 and vice versa for n,; each node
n € N is on a path from the start to the stop node. If
|IN(n)| = 1 we identify I N(n) with its single element,
and similarly for OUT'(n); we denote OUT (ny) = ey
and IN(ny) = e,.

Inf Syst Front

Example I Consider Fig. 2. The upper half of the figure
depicts an example process graph in standard BPMN
notation. In fact, this example is based on a BPMN dia-
gram example from the BPMN 1.1 specification (OMG
2008). We will use this process graph as a running
example throughout the paper.

The process contains edges, a start node (thin circle),
an end node (thick circle), various tasks (e.g., “Receive
Order”, “Ship Order”, etc.), and a number of routing
nodes such as the xor split after “Receive Order”. Only
one of the branches after this xor split will be executed:
either the one on which the order is rejected, or the
other one which features several more task nodes. Note
that “Ship Order” can be executed in parallel to the
other task nodes, due to the parallel split and join
nodes.

The intuitive meaning of the structures introduced
by Definition 1 should be clear: an execution of the
process starts at ny and ends at n.; a task node is an
atomic action executed by the process; parallel splits
open parallel parts of the process; xor splits open al-
ternative parts of the process; joins re-unite parallel/
alternative branches. The stated requirements are just
basic sanity checks for processes in our formalism.
Note that the formalism describes a common sub-
set of process modeling notations like BPMN (OMG
2008) and process execution languages like WSBPEL
(OASIS 2007). For example, the xor split in our for-
malism can be used to represent both the data-driven
decision gateway and the event-driven decision gate-
way (also called deferred choice). Similarly, our dis-
tinction between a split and a join gateway is not a
restriction, since a combined join-split gateway can be
translated into two separate gateways. It is not the in-
tention of our formalism to replace commonly used lan-
guages. Rather, the formalism only serves as an abstract
notation to present our results.

Fig. 2 Our illustrative
running example, in BPMN
notation

Fulfill Order

Formally, the semantics of process graphs is, simi-
larly to Petri Nets, defined as a token game. A state of
the process is represented by tokens on the graph edges.
Like for Definition 1, we closely follow (Vanhatalo
et al. 2007).

Definition 2 Let G = (N, £) be a process graph. A state
t of G is a function ¢ : £ — Ny from the set of edges
into the natural numbers including 0; we call ¢ a token
mapping. The start state ty is ty(e) = 1 if e = ep, tH(e) =0
otherwise. Let ¢ and ¢ be states. We say that there is a
transition from ¢ to ¢’ via n, written t —" ¢/, iff one of the
following holds:

Tasks, parallel splits and joins (tokens from INs to
OUTs) n e Ny UNpsUNp; and

te)—1 eeINn)
fle)=13te)+1 ecOUTn)
t(e) otherwise

Xor splits (token from IN to one OUT) n € Nys and
there exists ¢ € OU T (n) such that

te)—1 e=IN(n)
fley=1te)+1 e=¢€
t(e) otherwise

Xor joins (token from one IN to OUT) n € Ny, and
there exists eg € I N(n) such that

tle)—1 e=ep
fley=1te)+1 e=0UT@n)
t(e) otherwise

An execution path is a transition sequence starting in .
A state ¢ is reachable if there exists an execution path
ending in ¢.

®_>

0
Ship Order ——»

-

Send Invoice J—» -
- . J

Receive Accept

Payment Payment

@ Springer

Inf Syst Front

Note in Definition 2 that, in all transitions, t(e) is
implicitly constrained to be greater than 0 for the IN
edges e from which tokens are taken: otherwise, ¢'(e) =
t(e) — 1 would have to be less than 0, which is not al-
lowed because ¢ is a function into the natural numbers.
In all other aspects, the definition is straightforward:
t(e), at any point in time, gives the number of tokens
currently at e. Task nodes and parallel splits/joins just
take the tokens from their IN edges, and move them
to their OUT edges; xor splits select one of their OUT
edges; xor joins select one of their IN edges.

For the remainder of this paper, we will assume that
the process graph is sound: from every reachable state
t, a state ¢’ can be reached so that #'(e,) > 0; there is no
reachable state which has a token both on e, and on
some other edge; and there are no dead transitions, i.e.,
for every transition there is an execution path that can
fire it. These properties can be ensured using standard
workflow validation techniques, e.g., van der Aalst and
van Hee (2002), Vanhatalo et al. (2007).

Note that Definitions 1 and 2 do allow cycles in the
graph, i.e., they do cater for loops. As stated, for the
purpose of applying I-propagation we will later restrict
our focus to basic processes, which disallow cycles.
As also stated, we will outline extensions that cater
for structured loops. That formalism does not allow
arbitrary cycles in the process graph. Instead, the graph
as such is acyclic, but it may contain loops in the form of
repeatable sub-graphs (of the same kind). The overall
structure then is a tree of acyclic sub-graphs, where all
but the root of the tree are repeatable. Definition 2 for
such structured loops is straightforward, simply allow-
ing control to pass into and out of sub-processes, and
to pass from the end of a repeatable sub-process to its
start.

For the notions considered in the rest of this
section—semantic annotations and constraints bases—
structured loops make no difference at all, i.e., these
notions carry over exactly as stated.

2.1.2 Semantic annotations

For the annotations, we use standard notions from log-
ics, involving logical predicates and constants (the latter
correspond to the entities of interest at process exe-
cution time).> We denote predicates with upper-case
letters, usually G, H, I, and constants with lower-case
letters, usually c, d, e. Facts are predicates grounded

2Hence our constants correspond to BPEL “data variables”
(OASIS 2007); note that the term “variables” in our context is re-
served for variables as used in logics, quantifying over constants.

@ Springer

with constants, Literals are possibly negated facts. If / is
a literal, then —/ denotes I’s opposite (— p if l = p and
pif l=—=p);if L is a set of literals then — L. denotes
{—=1]1 € L}. We identify sets L of literals with their
conjunction /\,.; [. Given a set P of predicates and a
set C of constants, P[C] denotes the set of all literals
based on P and C; if arbitrary constants are allowed,
we write P[].

A clause is a universally quantified disjunction of log-
ical atoms, i.e., of non-grounded literals. For example,
Vx:—=G(x)v—=H(x) is a clause. The axiomatization
that comes with an ontology is a theory 6: a conjunction
of clauses.> Our polynomial-time algorithms will be
designed for binary theories: a clause is binary if it
contains at most two literals; a theory is binary if it is a
conjunction of binary clauses. Note that binary clauses
can be used to specify many common ontology proper-
ties such as subsumption Vx : G(x) = H(x) (where as
usual ¢ = abbreviates —¢ Vv /), attribute image type
restrictions Vx, y : G(x, y) = H(y), and role symmetry
Vx,y: Gx,y) = G(y, x).

An ontology 2 is a pair (P, 0) where P is a set of
predicates (§2’s formal terminology) and 6 is a theory
over P (constraining the behavior of the application
domain encoded by §2). For complexity considerations,
throughout the paper we will assume fixed arity, i.e., a
fixed upper bound on the arity of predicates P. This
is a realistic assumption because predicate arities are
typically very small in practice (e.g., in Description
Logics the maximum arity is 2). Annotated process
graphs are defined as follows.

Definition 3 An annotated process graph is a tuple
G=W,E&, 2, a). (N, E)isaprocess graph, 2 = (P, 0)
is an ontology, and «, the annotation, is a function
mapping n € Nt U {ng, n.} to (pre(n), eff(n)) where
pre(n), eff (n) € P[]. We require that there does not ex-
ist an n so that 6 A eff(n) is unsatisfiable, or 6 A pre(n)
is unsatisfiable.

We refer to pre(n) as n’s precondition, and to eff (n)
as n’s effect (sometimes called postcondition in the
literature). The annotation of tasks—atomic actions
that on the IT level can e.g., correspond to Web
service executions—in terms of logical preconditions
and effects closely follows Semantic Web service ap-
proaches such as OWL-S (e.g., Ankolekar et al. 2002;

3As indicated, our compliance rules are also clauses; however,
their formal interpretation is different. This will be explained in
Section 2.2, when we formally introduce constraints bases.

Inf Syst Front

Coalition 2003) and WSMO (e.g., Fensel et al. 2006).
All the involved sets of literals (pre(n), eff(n)) are
interpreted as conjunctions. Similarly to Definition 1,
the requirements stated in Definition 3 are just basic
sanity checks.

Example 2 Consider again our running example from
Fig. 2. The semantic annotations are given in Table 1.
For simplicity, the theory 6 is empty, i.e., no axioms
are given; we will discuss a modified example with
non-empty 6 below. Likewise, no preconditions are
specified, and an accordingly modified example will be
given further below. Note the negative effect of Accept
Payment.

The formal execution semantics is defined as follows.

Definition4 Let G = (N, &, 2,a) be an annotated
process graph. Let C be the set of all constants appear-
ing in any pre(n), eff(n). A state s of G is a pair (t, is)
where ¢ is a token mapping and i is an interpretation
i:P[C]— {0, 1}. A start state s is (ty, i) where 1y is as
in Definition 2, and iy = 0[C] A eff (ng). Let s and s’ be
states. We say that there is a transition from s to s’ via
n, written s —" ¢, iff one of the following holds:

1. neNpsUNpjUNyxsUNxy, iy =iy, and t, =" ty
according to Definition 2.

2. neNrt, ty —>"ty according to Definition 2, i |=
pre(n) and iy is a member of min(is, 0[C] A eff (n)).
The latter is the set of all i that satisfy 0[C] A eff(n)
and that are minimal with respect to the partial
order defined by

[

IA

i iff {p € PICY | ii(p) # is(p)}
c {p e PICl | ia(p) #is(p)}-

N

An execution path is a transition sequence starting in
a start state so. A state s is reachable if there exists an
execution path ending in s.

Table 1 Semantic annotations for the process in Fig. 2

Task Effects
Start node order(0), received(o)
Reject order rejected(o)
Fulfill order fulfilled(o)
Ship order shipped(o)
Send invoice invoiceSent(o, i), paymentExpected(o)
Receive payment paymentReceived(i)
Accept payment paymentAccepted(i),
not paymentExpected(o), paid(o)
Close order closed(o)

Given an annotated process graph (N, &, 2, o), we
will use the term execution path of (N,) to refer to
an execution over tokens that acts as if no annotations
were present.

The part of Definition 4 dealing with n e N psUNp;U
NxsUNx; parallels Definition 2: the tokens pass as
usual, and the interpretation remains unchanged.

Consider now the start states, of which there may
be many, namely all those that comply with 6, as well
as eff(np) (if annotated). This models the fact that, at
design time, we do not know the precise situation in
which the process will be executed. All we know is that,
certainly, this situation will comply with the domain
behavior given in the ontology and with the properties
guaranteed as per the annotation of the start node.

The semantics of task node executions is the most
intricate bit. First, for the obvious reasons, pre(n) is
required to hold. The tricky bit lies in the definition
of the possible outcome states i’. The semantics defines
this to be the set of all i’ that comply with 6 and eff(n),
and that differ minimally from i. This draws on the Al
literature for a solution to the frame and ramification
problems. The latter problem refers to the need to
make additional inferences from eff(n), as implied by
6. This is reflected in the requirement that i complies
with both eff(n) and 6. The frame problem refers to
the need to not change the previous state arbitrarily—
e.g., if an activity changes an account A, then any
account B different from A should not be affected.
This is reflected in the requirement that i differs min-
imally from i. More precisely, i’ is allowed to change
i only where necessary, such that there is no i’ that
makes do with fewer changes. This semantics follows
the possible models approach (PMA) (Winslett 1988);
while this approach is not universally accepted, it is
widely used and in particular underlies most recent
work on formal semantics for execution of Semantic
Web services (e.g., Lutz and Sattler 2002; Baader et al.
2005; Giacomo et al. 2006).

As stated, our compliance checking methods will be
defined for binary theories only. Binary clauses specify
certain consequences that must be implied by particular
effects. In that way, binary clauses are a convenient
modeling construct, and their semantics is “uncritical”
in that there is no ambiguity about their implications;
this is not so for clauses with more literals. The follow-
ing example illustrates this.

Example 3 Consider a variant of the process in
Fig. 2 with a task node n that cancels the order o.
Suppose that cancellation is annotated by eff(n) =
{orderCancelled(i)}. As in Example 2, the ontology
contains the predicate paymentExpected. Further, say

@ Springer

Inf Syst Front

0 contains a clause specifying that payment cannot be
expected for any order that is already canceled: Vx :
—orderCancelled(x) v —paymentExpected(x). Say we
execute n in a state s where we have paymentEx-
pected(o). Which are the possible resulting states
s, with s =" s’? By the definition of min(i, 6[C] A
eff(n)) in Definition 4, any such state must sat-
isfy (—orderCancelled(o) v —paymentExpected(o)) A
orderCancelled(o) which means of course that s’
must satisfy —paymentExpected(o). So the value of
paymentExpected(o) is changed as a side-effect of ap-
plying .

Now, among others, the ontology also contains the
predicates shipped(.) and invoiceSent(.,.). Suppose that
6 specifies that, for any order which has both shipped
and for which an invoice has been sent, we expect the
payment: Vx, y: —shipped(x) v —invoiceSent(x, y) vV
paymentExpected(x). Say that the state s from above
has shipped(o) and invoiceSent(o,i). Now, upon
executing n, as pointed out above we no longer expect
payment for o and so the clause is no longer satisfied
and we must “repair” it. Since the clause is not binary,
this spawns a non-trivial behavior of the minimal
change semantics. There are three options: falsify
shipped(o), falsify invoiceSent(o,i), or falsify both.
The first two options each yield a resulting state s'.
The latter option, in contrast, does not yield a resulting
state s’ because it is not a minimal change. One needs
not assume that o is neither shipped nor invoiced. It
suffices to assume one of those. The intuitive meaning
of this semantics is that, since o was canceled (by n),
something bad must have happened, i.e., the shipment
failed, or there was a problem with the invoicing.
While, of course, both may be the case, this seems an
unlikely assumption and is hence not considered.

2.2 Constraints bases

It remains to define what constraints and non-
compliances are:

Definition 5 Let § = (N, &, 2, a) be an annotated
process graph with constants C, where 2 = (P, 6). A
constraints base {8 is a set of clauses over the predicates
P.Let¢p = VX.9(X) be aclause in 8. Then any ground-
ing ¥ (Cy) of ¢ with a tuple Cy of constants from C
is a grounded constraint. A reachable state s is a non-
compliance, or non-compliant state, iff there exists a
grounded constraint ¥ (Cy) such that s = ¥ (Cp).

This definition is straightforward and should be self-

explanatory. We will identify ¥ (Cy) with the set of
literals it contains. Note that « and S share the vo-

@ Springer

cabulary P, and hence the semantic annotations may
make statements of interest to compliance checking
(this would not be the case for disjoint vocabularies).
Of course, doing the annotation in this way—so that the
annotations are adequate for compliance checking—
may induce additional modeling effort in practice.

A subtle point is the distinction between B and 6.
Both are formalized similarly. The difference lies in
how they are interpreted. # models the conditions that
any state must satisfy, due to the “physical” behavior
of the underlying business domain—such as, “any pur-
chase order of a particular product is, in particular, a
purchase order”. In contrast, § models the conditions
that any state should satisfy, in order to comply with
the rules of the business—such as, for example, that
the auditor for any activity is different from the actor
who performed or authorized the activity (separation of
duties); there is no physical law enforcing these rules.*
At the formal level, this difference is accounted for by
using 6 as part of the definition how states evolve, while
using B to check whether the states are desirable or not.

Example 4 Reconsider our running example from
Fig. 2 and Table 1. Say our constraints base is § = {Vx :
order(x) A received(x) = rejected(x) v paid(x)}. In
words, we impose that any order which has been re-
ceived must be either rejected, or paid.

Consider the grounding of x with o, i.e., the concrete
order dealt with by the process. The antecedent of
the implication, order(o) A received(o), is always true
as soon as Receive Order has been executed. At that
time, i.e., directly after executing Receive Order, the
order will neither be rejected nor paid, so the constraint
is violated at that point in the process. The constraint
becomes satisfied after Reject Order, and it becomes
satisfied after Accept Payment; it remains true after the
xor join because, no matter which side of the join has
been executed beforehand, one of the two options will
be fulfilled.

3 I-propagation

We now describe the I-propagation algorithm, which
we developed in previous work (Weber et al. 2008).
As stated in the introduction, I-propagation forms the
starting point of our work herein.

The original purpose of I-propagation was to de-
termine whether or not a process is executable. An

4A striking if imprecise illustration is that of gravity vs. traffic
rules: any car must drive on the ground, by physical law; whether
they use the left or right hand side of the road is a matter of rules.

Inf Syst Front

individual task node n is executable if, whenever the
task is activated, its preconditions are true: for all reach-
able states s with t,(IN(n)) > 0, s |= pre(n). The overall
process is executable if every one of its task nodes is.
I-propagation determines whether or not that is the
case, by ways of computing, for each edge e, the set of
literals that is always true when e carries a token.

I-propagation runs in low-order polynomial time,
and works correctly for a restricted class of processes.
To state this formally, we first need a little terminology.
We refer to cycles in (N, €) as loops. Two edges e; and
e, are parallel if there exists a reachable state s where
ts(e1) > 0 and t,(ey) > 0; two task nodes are parallel if
their incoming edges are. If n; and n, are parallel task
nodes and 6 A eff(n;) A eff (n,) is unsatisfiable, then we
say that n; and n, have an effect conflict. I-propagation
handles what we call “basic” processes:

Definition 6 Let G = (N, €, 2,a), 2 = (P,H), be an
annotated process graph. G is basic if it contains neither
loops nor effect conflicts, and 6 is binary.

Our compliance checking algorithms inherit these
restrictions from I-propagation, i.e., non-basic pro-
cesses are outside the more tractable cases that we
identify. The various restrictions were discussed in
the introduction already. For non-binary theories, we
have proved in our previous work that this restriction
cannot be relaxed without losing computational effi-
ciency (Weber et al. 2008). Whether or not this is the
case for effect conflicts is an open question. Regarding
loops, we have in the meantime devised an extension
of I-propagation to structured loops. We stick to the
original—much more concise—formalization because
the extension to loops is orthogonal to the compliance
issues considered herein. We will outline how the ex-
tended I-propagation works, and how our results on
compliance checking carry over.

Given a process graph whose annotations mention
the constants C, and a set L of literals (such as a
task node effect), in the following we denote L :=
{IeP[C1|6ALEIL,ie., Lis the closure of L under
implications in the theory 6. Since @ is binary, L can be
computed in polynomial time given fixed arity (Aspvall
et al. 1979). Note that, with binary 6, an effect conflict
can be easily detected as the (negative) overlap of the
closure over the effect sets, i.e., 0 A eff(ny) A eff(n,) is
not satisfiable iff eff (n;) N —eff(n;) # 0.

I-propagation consists of two steps: (1) determine
all pairs of parallel edges; (2) using that information,
determine for each edge e the set of literals that is
always true when e is active. In what follows, we explain
only step (2), which is more directly connected to the

results presented herein. Also, we focus on the details
which are directly relevant to the remainder of this
paper. The interested reader may look up all technical
details in Weber et al. (2008).

As the name suggests, I-propagation is based on
propagation steps. The propagation starts at the outgo-
ing edge of the start node, and proceeds by iteratively
firing subsequent nodes in the graph. The propagation
steps update sets of literals; one such set is assigned to
each edge in the graph. When the propagation ends,
these literal sets are exactly the desired ones, i.e., the
literals that are always true whenever the respective
edge is activated. One tricky bit is that we need to
capture the “side effects” that any task node may have,
on edges other than its own OUT edge. For this, we
introduce the following notation: parallel-eff(e) is the
collection of all parallel effect literals of an edge e € £.
Precisely:

parallel-eff (e)

= U eff (n)
ecg parallel to e,e=0UTw) for weny

The formal definition of [-propagation follows. The de-
finition is hard to read at first, but relies on straightfor-
ward key ideas; the reader may choose to skip directly
to the intuitive explanation of the algorithm below.

Definition 7 Let G = (N, &, £2, o) be a basic annotated
process graph, with constants C. We define the function
Iy: €& 2PN U (L} as Iy(e) = eff(ng) if e = OU T (ny),
Io(e) = L otherwise. Let I, I’ : £ — 2PIC1U{L},n e N.
We say that [’ is the propagation of I at n iff I(e) # L
foralle € IN(n),and I(e) = L foralle € OUT(n), and
one of the following holds:

1. neNpsUNxsand

I(IN(n)) \ —parallel-eff(e) e e OUT(n)
I(e) otherwise

I'(e) = {
2. ne NPJ and
I'(e)

_ N WUeerne 1)\ —parallel-eff(e) e=OUT (n)
1 otherwise

3. neNyyand
I'(e)

N ars ~nay 1(€))\—parallel-eff(e) e=OUT(n)
RG] otherwise

@ Springer

Inf Syst Front

4. neNypand
)= 0 U UUNm)\ —eff(m)) e=OUT()
RG] otherwise

If the annotation «(n) is not defined then eff(n) :=
¢ in the above.

If I* results from starting in [y, and stepping on to
propagations until no more propagations exist, then we
call I* an I-propagation result.

The definition of [should be obvious: it just collects
the literals that are guaranteed to hold at the start edge.
The propagation algorithm, although formulated as a
fixpoint operation, then performs a single pass over the
process—due to the requirement, on every propagation
step, that the IN edges are not set to L and the OUT
edges are set to L. For split nodes, the OUT edges
simply copy their sets from the IN edge. We have to
subtract the negated side effects of any parallel task
nodes since those literals may be invalidated while the
OUT edges are still activated. For parallel joins, the
OUT edge assumes the union of I(e) for all IN edges
e; this is justified because all those literals must be
true when #n is executed. Again, we need to care about
side effects. Dually, for xor joins we need to take the
intersection instead since any one of the incoming edges
may be active before n is executed. Finally, if #n is a
task node, then we need to take account of n’s own
effects. This is done in the obvious manner, removing

Fig. 3 Example process
model from Fig. 2 also
showing the I-Propagation
results, I*

I* = {order(0),

- received(o) }
/ 1

Fulffill Order

Reject Order

I* = {order(0),
received(o),
- fulfilled (0)}

the literals contradicted by eff(n), and adding the lit-
erals contained in eff (n). Note that side effects need
not be taken into account here since effect conflicts are
excluded by prerequisite.

Example 5 We illustrate I-Propagation using our run-
ning example from Fig. 2 (workflow) and Table 1 (an-
notations). The outcome of I-Propagation is depicted in
Fig. 3.

Observe how I-Propagation applies the effects of
a task node by adding them to the task’s outgoing
edge. The simplest occurrence of this is the first task
node, “Receive Order”, where the ingoing edge has
an empty [*. A more intricate propagation is the one
over “Accept Payment”, since the task’s negative effect
not paymentExpected(o) falsifies the previously true
paymentExpected(o). It is also evident how the 7* from
the incoming edge of a split node is copied to its outgo-
ing edges. In contrast, the parallel join takes the union
of the I* of its incoming edges (consider e.g. the literal
shipped(o)). The xor join in turn takes the intersection
of its incoming edges’ I*s—which is then the same as
before the xor split.

It should be noted that the details are actually not
as straightforward as the above may suggest. The cor-
rectness proof takes six pages, determining for example
particular properties of sets of parallel edges, and of
binary theories. Let us briefly consider the latter. In the
handling of task nodes, Definition 7 uses the notation

I* = {order(0),
received(o)_, rejected (0)}

\,

I* = {order(0),
received_(o)}

I* = {order(0),
received(o)_, closed (o)}

Close Order

"""""""""""""" . I¥ = {order(0),
received (o), fulfilled (o),
invoiceSent (0,i),

I* = {order(0), received (0),
fulfilled (o), shipped (o) }

,,:’ i H paymentReceived (i),

4 Ship Order |- paymentAccepted (), ,
not paymentExpected (0),
paid(o), shipped(o) }

) N\ I* = {order(0),
Send Invoice Receive . Accept received(o), fulfilled (0),
Payment ' Payment invoiceSent (0,i),
'/ / paymentReceived (i),
I# = {order(oi""/ . y paymentAccepted (i),
. ’ I* = {order(0), not paymentExpected (0),
received (o), fulfilled (o), received (o), fulfilled (o), paid(0)}

invoiceSent(0,i),
paymentExpected (0) }

@ Springer

invoiceSent(0,i),
paymentExpected (0),
paymentReceived (i)}

Inf Syst Front

eff (n). As stated above, this denotes the set of all literals
which follow from 6 and eff(n). Why is it correct to
simply subtract —eff(n) and add eff (n)? Recall that the
semantics of task node executions is quite complex, c.f.
Section 2.

The observation underlying the simple handling in
Definition 7 is: (*) With binary 6, if executing n makes
literal | false in one possible transition, then —1 follows
from 0 A eff(n). Due to this observation, it suffices to
subtract —eff(n): [does not become false in any suc-
cessor state, unless its opposite is implied. This does
not hold for more general 6. To see this, re-consider
Example 3. We have an axiom Vx, y : —shipped(x)V
—invoiceSent(x, y)Vv paymentExpected(x). We have a
state s that satisfies all of shipped(o), invoiceSent(o, i),
and paymentExpected(o). We execute a task that falsi-
fies paymentExpected(o). As explained in Example 3,
we get two possible transitions: one to a state which
additionally falsifies shipped(o), and one to a state
which additionally falsifies invoiceSent(o, i). Hence the
only thing that holds true in all possible outcome
states is —paymentExpected(o). Each of shipped(o) and
invoiceSent(o, i) was made false in one transition, but
neither follows from the effect of the task. This is
in contrast to (*). Intuitively, restricting 6 to binary
clauses ensures that the side effects are always “deter-
ministic”. The main result regarding I-propagation is:

Lemma 1 (Weber et al. 2008) Let G = (N, €, 2,) be
an executable basic annotated process graph. There ex-
ists exactly one I-propagation result I*. For all e € £, we
have that | € I*(e) iff, for all reachable states s where
ty(e) > 0, s =1 With fixed arity, the time required to
compute I* is polynomial in the size of G.

As indicated above, the proof of this lemma is non-
trivial; apart from the sketched issue of binary clauses
it contains other intricate parts which are not easily ex-
plained within a few sentences. Since these arguments
are not of importance for the work at hand, we omit
them and refer the reader to Weber et al. (2008) for
details. It is, however, important for the work at hand
to note that the time complexity of [-propagation is
low-order polynomial. The number of different liter-
als |P[C]| is exponential only in predicate arity, i.e.,
the maximum number of arguments any predicate has,
which is assumed to be fixed. Usually predicates have
only 1 or 2, maximally 3 arguments. With binary 6, L
for any set L of literals can be computed in O(|P[C]}?),
so eff (n) can be pre-computed for every relevant z in
time O(JN7| * |P[C]|?). Hence an upper bound on the
time required for computing I* is O(JN7| * |P[C]|* +
IV [PICT 1ED.

A remark is in order regarding the prerequisite that
the process is executable, i.e., preconditions are always
satisfied. We have proved in Weber et al. (2008) that,
without this prerequisite, testing whether or not a literal
is necessarily true at an edge is NP-hard. So, like the
restriction on binary clauses, this prerequisite cannot be
relaxed without losing computational efficiency.’

Due to the low-order polynomial time complexity, I-
propagation can be expected to be fast—e.g., work in
real time within a modeling environment — unless the
processes are huge. In our experiments, a process with
17 control-flow nodes (start, end, split, join), 23 task
nodes, and 46 edges has been processed in 0.15 s on a
standard laptop computer with a single-core Pentium
(M) CPU running at 1.6 GHz.

Let us say a few words on how I-propagation is
extended to processes with structured loops. As one
may expect, in the presence of loops a single pass over
the process does not do—we need to take into account
how changes made later on may feed back into earlier
parts of the process, when a part of the process is being
repeated. So our extended algorithm does not make
use of the L symbol to force the fixpoint operation
into a single pass. Rather, all edges—except the start
edge which is handled as before—are initialized to
contain the entire set of literals (including in particular
contradictory literals). Each step of the fixpoint process
then intersects the old content of the outgoing edges
with their new (propagated) content. The propagation
steps as such remain the same, with straightforward
extensions for start and end nodes of sub-processes
(propagating into/out of/ back to the start of the loop).
Since the contents of edges decrease monotonically, the
number of propagation steps is bounded from above by
the number of edges multiplied with the number of dif-
ferent literals. The guarantee given upon termination is
exactly as stated in Lemma 1.

We remark that, while the extended algorithm
sounds simple and intuitive, its formal write-up is rather
complicated. The same goes for the proof of (the equiv-
alent of) Lemma 1, which examines intricate connec-
tions between paths in the state space of the process,
and paths of propagation steps.

STt may also be puzzling in this context that, as stated above, we
designed I-propagation in order to check whether a process is
executable. However, I* can actually be used for that purpose:
G is executable iff, for all n € N, pre(n) C I*(IN(n)). First, if
G is executable then by Lemma 1 we have that [* captures ex-
actly the literals which are necessarily true, and hence obviously
pre(n) € I*(IN(n)) for all n. Second, if n is not executable but
all its predecessors are, then the arguments behind the proof of
Lemma 1 can be applied up to n, and we get that /* handles I N (n)
correctly, and hence pre(n) € I*(IN(n)) must hold.

@ Springer

Inf Syst Front

4 Compliance checking

We leverage on the outcome of I-propagation in order
to design compliance checking techniques, determining
whether a clausal constraint may be violated while
some edge is active. As hinted, we devise an exact check
for a particular restricted case where that is possible; we
devise approximate checks for a more general case. We
proceed in that order.

4.1 Exact checks for non-contradicted clauses

Clausal constraints can be checked exactly—and in
polynomial time—if they are not “contradicted” by
the process. Formally, say G = (N, £, 2,) is a basic
annotated process graph, and g is a constraints base.
Say ¥ (Cy) is a grounded constraint. We say that v (Cy)
is contradicted if there exists a literal [€ ¢ (Cy), as well
as a task node n € N7, so that the negation of / follows
from the effect of n, i.e., —[€ eff(n). Our observation is
that, if this is not the case, then checking compliance
with ¥ (Cy) can be formulated in terms of checking
compliance with a unit clause:

Theorem1 Let G = (N, &, 2, «) be an executable ba-
sic annotated process graph, with constraints base f;
let ¥ (Cy) be a grounded constraint which is not con-
tradicted. Let H be a new predicate symbol, and de-
fine G' = (N, &, 2,a') by setting, for every n € Ny U
{no,n4} where eff(n) N ¥/(Co) # 9, eff'(n) == eff(n) U
{H}, where eff’ denotes the effects assigned by o'. Let
I* be the I-propagation result for G, and let e € £ be
arbitrary. Then H € I*(e) iff, for every state s reachable
in G where ty(e) > 0, s = ¥ (Cop).

Proof In what follows, we denote reachable states of G
with s, and reachable states of G’ with s'. Clearly, G’ is
still executable and basic. Hence we can apply Lemma 1
and we know that H e I*(e) iff, for every state s’ where
ty(e) > 0, s = H. It hence suffices to show that, for
every edge e € &:

(*) allswheret(e) > 0haves = ¥ (C) iff all s’ where
ty(e) > O haves = H.

That is, at every edge, ¥ (Cp) is “always true” iff H
is “always true”. This claim is proved by induction
over the process structure. The induction base case is
the outgoing edge of the start node, e = ny. Here the
claim follows by construction. For the inductive case,
let n € N be arbitrary. As induction hypothesis, we
assume that (*) holds for each of n’s incoming edges.
As induction step, we prove that (*) holds for each of
n’s outgoing edges. If n is anything but a task node, then

@ Springer

this is obvious, since 7 does not affect the truth of either
¥ (Cp) or H. More precisely, for split nodes v (Cy) resp.
H are always true on the outgoing edges iff they are
always true on the ingoing edge; for parallel join nodes,
¥ (Cp) resp. H are always true on the outgoing edge iff
they are always true on at least one ingoing edge; for
xor join nodes, ¥ (Cy) resp. H are always true on the
outgoing edge iff they are always true on all ingoing
edges.

Say n is a task node. First, assume that all s where
t;(IN(n)) > 0 have s = ¥ (Cp). By induction hypothe-
sis, the same holds for all s' and H. Since ¥ (Cy) is
not contradicted, and by construction, we get the same
properties for OU T'(n), showing (*) as required.

Second, assume that eff (n) N ¥ (Cy) # @. Then, since
literals from v (Cy) are never invalidated, all s where
t,(OUT(n)) > 0 have s = ¥ (Cy). By construction, n
makes H true, which is also never invalidated, and
hence all s’ where #;(e) > 0 have s = H, showing (*¥)
as required.

We are left with the case where eff(n) N YU (Co) =
@ and there exists s where #(IN(n)) >0 and s }&
¥ (Cp). By induction hypothesis, there exists s* where
ty(IN(n)) > 0and s’ = H. In s, we can execute n (note
here the prerequisite of executability) and reach a state
sy that has ¢, (OUT (n)) > 0 and s; = ¥ (Cp). Similarly,
in s we can execute n (note here the prerequisite of ex-
ecutability) and reach a state s that has t;, (OU T (n)) >
0 and s| = H. Hence the outgoing edge has neither
¥ (Cp) nor H necessarily true, and (*) holds again. This
concludes the argument. O

Theorem 1 can be exploited for compliance check-
ing, in the obvious manner. That is, we define our first
compliance checking method as follows:

(A) Given a grounded constraint ¥ (Cy), construct the
process G as per the claim of Theorem 1, and
run I-propagation on G'. From the resulting 7*,
for every edge e one can read directly whether or
not ¥ (Cy) may be violated while in a state where
e carries a token.

Theorem 1 and method (A) carry over directly to
processes with structured loops, with exactly the same
way of constructing G'. The proof of Theorem 1 in this
setting uses the same core arguments, except that now
we need to add an induction over process structure,
first proving (*) for process graphs with no sub-graphs
(i.e., with no loops), then considering processes where
all sub-graphs satisfy (*) by induction hypothesis.

Inf Syst Front

Fig. 4 Modified running
example including a new
“Refund Payment” task

(O—

Fulfill Order

Reject Order

\i

Close Order

Ship Order > +

Send Invoice }—»

Accept

Payment Payment

Receive
Payment

Refund ’

The following example illustrates method (A).

Example 6 Reconsider our running example, and
the grounded constraint —order(o) v —received(o) vV
rejected(o) v paid(o). We wish to check at which points
in the process—at which edges—this constraint is satis-
fied. First, note that the constraint is not contradicted:
consider Table 1 or Fig. 3 to verify that none of its
literals is negated by the effect of any node, other than
the start node. Hence, we can apply method (A). We
introduce a new predicate H which we insert into the
effect of every node that achieves one of the literals
in the constraint. These task nodes are Reject Or-
der (which achieves rejected(o)) and Accept Payment
(which achieves paid(0)). By I-propagation, we get H
at the outgoing edges of these two task nodes. Con-
sequently, we get H on both ingoing edges of the xor
join node. Taking the intersection there, we get H on
the outgoing edge of the xor split—reflecting the fact
that the constraint has been satisfied in either case—
and we finally get it on the stop edge of the process.
For all other edges e, H is not contained in I*(e).
This correctly reflects the points in the process where
the constraint may be violated (where there exists an
execution violating the constraint while the respective
edge carries a token) and where this is never the case.

It is important to note that method (A) really
“works” only if the grounded constraint is not contra-
dicted. The following is an example where that prereq-
uisite is not given.

Example 7 Consider a modified example where, be-
tween Accept Payment and the parallel join, we in-
sert another task node, Refund Payment, with effects
— payment Accepted(i) and — paid(o). This is depicted
in Fig. 4.

Say that we have the constraint Vx,y:
—invoice Sent(x, y) Vv payment Expected(x) vV
payment Accepted(y). That is, whenever an invoice

has been sent the corresponding payment needs
to be either expected or accepted. We next
consider the grounded constraint —invoiceSent(o, i) v
payment Expected (o) v payment Accepted(i). This con-
straint is contradicted, because Accept Payment
negates payment Expected(o). Say we nevertheless try
to apply method (A). Up to Receive Payment, we get
the correct result simply because none of the literals
has been contradicted so far. After Accept Payment,
method (A) still gets the correct result, namely that
the constraint is true on the outgoing edge, H € I*(e)
where e is the outgoing edge of Accept Payment.
However, this correct result is just a coincidence—
method (A) “gets lucky”. To see this, consider that
method (A) completely ignores how Accept Payment
contradicts the constraint, namely by the effect that
falsifies payment Expected(o). Since, before Accept
Payment, the constraint was true only due to that
fact, the constraint would now actually be violated—
unrecognized by method (A)—were it not for the
additional effect of Accept Payment that establishes
payment Accepted(i).° In the next task node, Refund
Payment, there is no such lucky coincidence. The task
node contradicts payment Accepted(i), and hence the
constraint is violated at its outgoing edge. Ignoring
the contradiction, method (A) does not notice this. I-
propagation assigns H to the outgoing edge of Refund
Payment, and we wrongly conclude that the constraint
will always be complied with at that point.

4.2 Approximate checks for contradicted clauses

It is as yet an open question whether contradicted
clauses can be checked exactly in polynomial time.
Herein, we instead provide two approximation meth-
ods. The methods are dual; one guarantees to find

®Note that this “lucky coincidence” suggests a simple generaliza-
tion of non-contradicted constraints: a task node may negate one
of the constraint’s literals as long as it makes another one true.

@ Springer

Inf Syst Front

only non-compliances (but not necessarily all), the
other guaranteeing to find all non-compliances (but
may report spurious ones). Both methods are based on
the information provided by I-propagation. However,
we generalize the method: in difference to before, we
do not require the process to be executable. As it
turns out, even in this situation I-propagation gives the
guarantee that we need for our approximation tech-
niques. Namely, we can prove the following variant of
Lemma 1:

Lemma2 Let G = (N, &, 2, a) be a basic annotated
process graph, and let I* be the I-propagation result.
Let e € £ be arbitrary, and let | € I*(e). Then, for all
reachable states s where t;(e) > 0, we have s = L.

Proof Let ¢’ = (N, &, 2,d') be like G except that
pre’(n) has been set to ¢ for all n € N7. Since G’ does
not alter the structure of G, there is a 1-to-1 corre-
spondence between the states reachable in G and the
states reachable in G'. We denote corresponding states
with s and s/, in the obvious manner. Further, fore € £,
denote by () e the set of literals true in all states s where
ts(e) > 0, and denote by (' e the set of literals true in all
states s’ where fy(e) > 0.

Obviously, G’ is executable. Hence we can apply
Lemma 1, and get that /* is correct for G": for all e € &,
we have that () e = I*(e). Hence it suffices to show
that:

(*) foreveryee &, MNe2(e.
We prove (*) by means of proving the following:
(**) foreveryee &, {s|t;(e) >0} C{s' |ty > 0}

That is, the states reachable in G (at e) are a subset
of those reachable in G’. Obviously, this implies (*).
It is easy to prove (**) by induction over the process
structure. The base case, outgoing edge of the start
node, is obvious (the sets of states are identical). The
inductive case is likewise obvious in all cases except
task nodes. As for the latter, if (**) holds on the incom-
ing edge then it also holds on the outgoing edge due to
the role that preconditions play in the semantics as per
Definition 4: if the precondition is not satisfied, then a
transition is disallowed; otherwise, the precondition has
no influence. This concludes the argument. O

In words, Lemma 2 says that, if we ignore
preconditions—if we act as if the process is
executable—then we can only make it harder for
a literal to be always true. Hence the outcome of I*
is conservative, in that sense. Exactly the same claim,

@ Springer

with exactly the same proof arguments, applies to
processes with structured loops.

One of our approximation methods is based directly
on I*. The other method is based on the dual notion
of U*. This is defined as follows. Say G = (N, £, 2,)
is a basic annotated process graph with constants C. If
I* is the I-propagation result, then for e € £ we denote
U*(e) :=={l |l e P[C],—l & I*(e)}. In words, U*(e) is
the set of literals that are not contradicted by I*(e). By
Lemma 2, we immediately get:

Lemma3 Let G = (N, &, 2, a) be a basic annotated
process graph, and let I* be the [-propagation result. Let
e € & be arbitrary, and let | be a literal so that there exists
a reachable state s where t,(¢) > 0 and s =1. Then we
havel € U*(e).

Proof Assume to the contrary of the claim that / ¢
U*(e). Then, by construction, we have —/ € I*(e). By
Lemma 2, this means that, for all reachable states s
where t,(e) > 0, s = —1. This is a contradiction to the
prerequisite, and concludes the argument. O

In that sense, U* is conservative—includes all lit-
erals that may possibly be true—since [* is conser-
vative in the dual way (obviously, the same holds
true for processes with structured loops). This directly
leads to the main result underlying our approximation
techniques:

Theorem 2 Let G = (N, &, 2, a) be a basic annotated
process graph; let I* be the I-propagation result. Then,
foralle € &:

1. Ifthere exists a grounded constraint (Cy) such that
for all | € ¥ (Cy) : =1 € I*(e), then every reachable
state s with ty(e) > 0 is a non-compliance.

2. Ifthere exists a non-compliant state s with t;(e) > 0,
then there exists a grounded constraint v (Cy) such
that for alll € y(Cy) : =1 € U*(e).

Proof Obviously, any state s is a non-compliance iff it
violates one of the grounded constraints. Hence, the
claim is a simple consequence of Lemmas 2 and 3. First,
if for all/ € ¥ (Cy) : =1 € I'*(e), then by Lemma 2 every
reachable state s with #;(e) > 0 violates all of ¥ (Cy)’s

Inf Syst Front

literals. Second, if s violates ¥ (Cy), then, for every
[€ ¥ (Cy), we have s = —I[and hence, by Lemma 3,
—1 € U*(e). This concludes the argument. O

Theorem 2 immediately suggests our two approxi-
mate methods: for every edge e, check whether there
exists a grounded constraint ¥ (Cy) such that

(B) foralll e ¢(Cy): —I e I*(e), or
(C) foralll e y(Cy): =l e U*e).

If (B) applies, then we know for sure that a non-
compliant state exists, presuming that a state activating
e is reachable. If (C) applies, then we know that a non-
compliant state may exist; by contra-position, if (C)
does not apply for any e and 1/ (Cy) then we know that
the process complies with the constraints base. Clearly,
if all predicates have a fixed arity and if the number of
ground constraints is polynomial (i.e., if the number of
variables in any constraint is fixed), then all the tests
can be performed in polynomial time.

Since, as stated, Lemmas 2 and 3 carry over directly
to processes with structured loops, the same is true of
Theorem 2 as well as methods (B) and (C).

The advantage of tests (B) and (C), over method
(A) as defined above, is that they do not require the
constraint to be non-contradicted, and neither do they
require the task nodes to be executable. We illustrate
this, and the difference between tests (B) and (C),
with some examples. We start with the example of a
contradicted clause.

Example 8§ Reconsider the modified example from
Fig. 4, with the grounded constraint —invoiceSent(o,
i) Vv paymentExpected(o) v payment Accepted(i). As
explained above, with method (A) we come to
the wrong conclusion that this constraint is al-
ways satisfied at the outgoing edge of Refund Pay-

Fig. 5 Modified running
example including an

ment. However, method (B) detects the violation.
If e is the outgoing edge of Refund Payment,
then we get {invoiceSent(o, i), — payment Expected(0),
— payment Accepted(i)} C I*(e). Hence test (B) applies
and we have proved that, whenever Refund Payment
has been executed, the constraint is violated. (This
could be repaired by stating explicitly that refund
Payment retracts the invoice, i.e., by giving it the ef-
fect —invoiceSent(o,i).) Of course, test (C) applies
as well.

We next modify this example some further to illus-
trate how test (B) may fail to detect a non-compliance,
which may never happen for test (C).

Example 9 Say we make Refund Payment an optional
node, i.e., in difference to before we insert it as one
of the branches of an xor construct. This is depicted in
Fig. 5.

Again, consider the grounded constraint
—invoiceSent(o, i) VvV paymentExpected(o) Vv
payment Accepted(i). Test (B) will, as before, correctly
detect that this constraint is violated at the outgoing
edge of Refund Payment. However, that information is
lost at the outgoing edge e of the xor join: at this point in
the process, Refund Payment has not necessarily been
executed. This is reflected in the fact that (among other
things) — payment Accepted(i) ¢ I*(e). Hence test (B)
does not apply for e. This is incorrect since, of course, it
may happen that e carries a token while the constraint
is violated, namely in the cases where Refund
Payment was indeed executed. Test (C) correctly
detects this possibility. None of invoiceSent(o, i),
— payment Expected(0), or — payment Accepted(i) are
contradicted by 7*(e), hence they are all contained in
U*(e), hence test (C) applies.

O

X

optional “Refund
Payment” task

Fulfill Order

» Reject Order

0 Close Order .

Ship Order
Refund
Payment
Send Invoice Receive Accept
Payment Payment

@ Springer

Inf Syst Front

We conclude this section with a final example illus-
trating the role of preconditions, and how test (C) may
wrongly report correct behavior as non-compliant.

Example 10 Say we give Close Order the precondition
paid(o). Obviously, the task is then not executable
anymore because its precondition is violated in case
the order has been rejected. I-propagation ignores
this fact, and consequently we have I*(e) = {order(0),
received(0), closed(o)} as before (where e is the out-
going edge of Close Order). However, really, every
reachable state activating e also satisfies paid(o), simply
because the precondition admits only such states. So we
see that—as guaranteed by Lemma 2—1I*(e) is a subset
of the true literals; a proper subset, in this case.

The literal missing from [*(e) results in a misbe-
havior of method (C). Say we simply want to check
whether, at the end of the process, paid(o) (the
grounded constraint containing only this single literal)
is satisfied. Test (B) does not apply because it cannot be
deduced that paid(o) is necessarily false. However, test
(C) applies because I-propagation mistakenly came to
the conclusion that paid(o) may be false. (Remember
here that, as stated before, testing truth of even single
literals is NP-hard in the presence of non-executable
task nodes (Weber et al. 2008)).

Summing up, we devised three methods for com-
pliance checking: one exact method (A) for clauses
which are not contradicted, one sound but incomplete
approximate method (B), and one unsound but com-
plete approximate method (C). Note that, due to their
respective properties, it makes sense to schedule these
methods in a certain way. If the constraint is non-
contradicted, then one should run only (A). Else, one
should first try (B) which guarantees to only flag edges
that are actually erroneous. Once (B) does not report
any non-compliances anymore, one should try method
(C); if that completes without reporting errors, then it is
certain that the process is fully compliant. We reiterate
that exactly the same methods apply, with exactly the
same guarantees, to processes with structured loops.

5 Diagnosis

In order to efficiently support the user in compliance
checking, it is of high value to be able to point out
the sources of an error. Since we check the compliance
rules against summaries of the logical states that may
occur, we do so by tracing how the logical states leading
to non-compliance may come into being. At base, there
are three questions we are interested in answering:

@ Springer

(1) What are the reasons for a literal / to be necessarily
true at an edge e? (2) What are the reasons for a literal
[to be possibly true at an edge e? (3) What are possible
reasons for a literal / to be possibly true at an edge e?
Based on answers to these questions, we can provide di-
agnosis techniques for the various compliance checking
methods introduced in the previous section.” In what
follows, we first include a sub-section detailing how
questions (1)—(3) can be answered. Then another sub-
section explains how this information can be employed
for diagnosing non-compliances.

5.1 Tracing literals

Consider first question (1): what are the reasons for a
literal / to be necessarily true at an edge e? The answer
is, all nodes that cause / and/or that belong to a path
between such a cause and e. The set of these nodes,
R (e,), can be computed as follows.

Definition 8 Let G = (N, £, £2, o) be a basic annotated
process graph, and let /* be the I-propagation re-
sult. Let e € £ and let [be a literal. If [€ I*(e), then
R (e, l) := @. Else:

1. n e R (e,) where n is the node with e € OU T'(n);

2. if ne WxsUNpg)N RT(e,]), then n' € R"(e,])
where n’ is the node with OU T (n') N IN(n) # @;

3. if neNrNR"(e,]), and [&eff(n), then n' e
RT(e,]) where n' is the node with OUT)N
IN(n) # 0;

4. if ne WNxsUNpy) N RT(e,l), then n' € R"(e,])
where n’ is any node so that there exists e €
OUT@)N IN(n) wherel € I*(€).

Definition 8 is best understood in terms of defining
R (e,) by a certain form of backward chaining from
e. Starting at e, the chaining includes into R (e, /) all
nodes on whose outgoing edges / is contained in [*;
it stops when it reaches a task node that causes / to
be true. It is easy to see that this set of nodes indeed
captures the reasons for / being necessarily true at e, in
the following sense:

Proposition1 Let G = (N, &, 2,a) be a basic anno-
tated process graph, and let I* be the I-propagation

"Note that we only talk about “reasons for a literal being true”,
not about “reasons for a literal being false”. We get the latter
for free due to the duality between positive and negative literals.
For example, if we want to ask “what are the reasons for a literal
[to be necessarily false at an edge e?” then this is the same as
question (1) for —/.

Inf Syst Front

result. Let e € & and let | be a literal such that | €
I*(e). Define G = (N, €, 2, a’) which is like G except
that eff(n) :==9 for all n ¢ R"(e,l). Let I*' be the I-
propagation result for G'. Thenl € I*(e).

In words, R (e,) includes enough nodes to make /
true at e, even when ignoring the effects of all other
nodes. This is simply because Definition 8 backchains
from e until it has collected all potentially relevant task
nodes. One may wonder whether R' (e,) is minimal
in that property, i.e., whether removing any node from
it will necessarily disvalidate Proposition 1. This is not
the case: for parallel joins n, [may be contained in
I*(OUT(n)) even if it is contained in /*(¢’) for only a
subset of the edges ¢’ € I N(n). Definition 8 collects all
these ¢’. To be minimal, it would have to select just a
single such ¢’. However, that would not be appropriate
for diagnosis reasons since we are interested in all
reasons why / is necessarily true at e.

Obviously, R"(e,l) can be computed in low-order
polynomial time. We finally remark that R (e, [) never
includes a task node n where —I € eff(n). In such a case,
clearly we cannot have [€ I*(OU T (n)), whereas it is
easy to see that this holds for any n € R (e, [): this is
an invariant over the backchaining steps performed in
Definition 8.

For processes with structured loops, we can simply
extend Definition 8 by: handling the start nodes of
repeatable sub-processes like xor joins (control may
come here either from outside the loop, or from its
end); and handling the end nodes of repeatable sub-
processes like xor splits (control may go either outside
the loop, or back to its start). Proposition 1 and the
rest of our discussion above then carry over exactly as
stated.

Example 11 Reconsider our running example from
Fig. 2 and Table 1, the constraint —order(o) v
—received(0) V rejected(o) Vv paid(o), and the literal H
introduced by test (A). We have H € [*(e,), i.e., the
constraint is guaranteed to hold at the end of the
process. Constructing R (e, H), we include: Close Or-
der; the xor join; Reject Order; the parallel join; Accept
Payment. This sub-graph correctly reflects the reason
why the constraint is necessarily true at e .

Consider now question (2) from above: what are the
reasons for a literal / to be possibly true at an edge
e? Here we consider the case where, in difference to
question (1), ¢ I*(e); we only have [€ U*(e). What we
want to know is, which nodes contribute to making /
true at e? The answer is similar to before. We define:

Definition 9 Let G = (N, &, 2, o) be a basic annotated
process graph, and let 7* be the I-propagation result.
Let ec & and let [be a literal. If [€ U*(e), then
R (e,]) := . Else:

1. n e R"(e,[) where n is the node with e € OUT (n),
or IN(n) is parallel to e and / € eff (n);

2. if ne NxysUNps)N R>(e,l), then n' € R>(e, 1)
where #' is the node with QU T (n') N IN(n) # ¥,

3. if neNyNR (e), and [&eff(n), then n' e
R"(e,]) where n' is the node with OQUT(n") N
IN(n) # 0;

4. if ne Ny;UNpy) N R>(e,l), then n' € R (e,)
where n’ is any node so that there exists ¢ €
OUT(n) N IN(n) wherel € U*(€).

This is like Definition 8, with two differences. First,
the backchaining starts not only from e but also from
any parallel task nodes achieving /. (Note however that
the latter nodes will not generate any further chaining
since the rule for task nodes stops when / is an effect.)
Second, for join nodes, we include predecessors where
[€ U*(€') rather than [€ I*(e’)—this accounts for the
fact that / isn’t necessarily in /* in the first place, i.e.,
at e itself. Similarly as for R' (e, 1), R”(e,[) suffices to
make / possibly true at e, i.e., we have:

Proposition2 Let G = (N, &, 2,a) be a basic anno-
tated process graph, and let I* be the I-propagation
result. Let e € £ and let | be a literal such that | €
U*(e). Define G' = (N, &, 2, a’) which is like G except
that eff(n) :== @ for all n € R*(e,l). Let I*' be the I-
propagation result for G'. Thenl € U* (e).

This holds due to same arguments as given above
for Proposition 1. Likewise, minimality is not given,
R” (e, I) can be computed in low-order polynomial time,
and a node n with —/ € eff(n) can never be part of
R” (e, l). Note further that, for any e and /, R*(e,/) 2
RT (e,). This is because I* is always a subset of U*.
Again, for processes with structured loops, the same
properties are achieved by handling the start nodes of
repeatable sub-processes like xor joins, and the end
nodes of repeatable sub-processes like xor splits.

Example 12 Reconsider our running example from
Fig. 2 and Table 1, in a modification that has the literal
— paid(o) in the annotation of the start node. We have
paid(o) € U*(ey), i.e., the literal may be true at the
end of the process. Constructing R”(ey, paid(o)), we
include: Close Order; the xor join; the parallel join;
Accept Payment. Clearly, these are exactly the nodes

@ Springer

Inf Syst Front

responsible for the possibility to have paid(o) true in
the end.®

Consider finally question (3) from above: what are
the possible reasons for a literal / to be possibly true
at an edge e? What we target with this question—what
we mean with “possible reasons”—is the set of nodes
that could in principle contribute to making / true at e,
but that do not do so, due to the process structure. We
define this set of nodes as:

Definition 10 Let G = (W, &, 2, o) be a basic anno-
tated process graph, and let I* be the I-propagation
result. Let e € £ and let [be a literal. Then R¥(e,) :=
(neNr|leeff(n),n ¢ R (e,).

A node n may be in R%(e, /) because either: a node
n’ in between n and e falsifies [; or n is ordered after
e; or e and n belong to alternative (xor’ed) parts of the
process.

Example 13 Reconsider our running example. Say
e is the outgoing edge of Accept Payment. Then
R=(e, closed(0)) contains only the task node Close
Order.

It is of course debatable whether these or other defi-
nitions are most suitable for diagnosis purposes. That is
true especially of our answer to question (3), which may
seem rather arbitrary. Then again, it appears difficult
to come up with a more informed technique, since
we cannot look into the head of the human modeler
and guess what she really meant to do. For a better
understanding of these issues, one needs to run large-
scale empirical experiments with alternative options.
This is left for future research.

5.2 Tracing non-compliance

Equipped with the literal tracing methods from above,
we can now relatively easily assemble some methods for
tracing non-compliances. We distinguish the different
possible outcomes of our compliance checking meth-
ods. Say G = (N, &, £2, @) is a basic annotated process
graph and e is an edge.

1. Test (A) applies, non-contradicted constraint
¥ (Cp) found to be violated Say we constructed G’

8If the start node does not have the effect — paid(0), then this
is formally interpreted to mean that paid(o) might be true at
the beginning already. Consequently, R” (e, paid(o)) collects all
nodes on paths from n to n that do not contain Accept Payment
—i.e., all nodes except Send Invoice and Receive Payment.

@ Springer

according to Theorem 1, ran I-propagation on G’,
found that H ¢ I*'(e), and hence proved that there
exists a reachable state s where e is active and v (Cp)
is violated.

In this situation, obviously it must be the case that
¥ (Co) N I*(e) = . We distinguish between two
kinds of literals in ¢ (Cy): those that are certainly
false, ¥ (Cp) \ U*(e); and those that may be true,
Y (Co) NU*(e).

For each [€ ¢/ (Cy) \ U*(e), most importantly we
want to know why it is false at e. That is, we
highlight the set of nodes RT(e, —l). If desired,
the user can be given the option to also highlight
R<(e, 1), i.e., the nodes that could have contributed
to making / true, but that don’t for some flaw in the
process structure.

For the literals / € ¥ (Cy) N U*(e), which may in-
deed be true, the first thing we are interested in
is which nodes contribute to making / true at e,
i.e., R”(e,[). If desired, the user can also highlight
R” (e, =) — the nodes contributing to make / false
at e —as well as R¥(e, [) — the nodes that could have
contributed to making / true.

2. Test (B) applies, contradicted constraint v (Cy)

found to be violated Say we ran I-propagation on G,
found that for all / € y(Cy) : =/ € I*(e), and hence
proved that every reachable state s where e is active
violates ¥ (Cp).
Most importantly, for every / € ¥ (Cy) we want to
highlight the reason for being false, i.e., R (e, =1).
If desired, the user can be given the option to also
highlight R*(e, [).

3. Test (C) applies, contradicted constraint v (Cy)

found to be possibly violated Say we ran I-
propagation on G and found that for all / € ¢ (Cp) :
=1 € U*(e); so we could not disprove the existence
of a reachable state where e is active and ¥ (Cp) is
violated.
Again, we distinguish between v (Cyp) \ U*(e) and
Y (Co) N U*(e). For the former literals /, which are
known to be false, we highlight R' (e, —[) and,
if desired, R*(e,[). The latter literals are neither
known to be true nor known to be false. The first
thing of interest is, hence, R"(e,), the nodes that
contribute to making / true. If desired, the user can
also highlight R” (e, —/) and/or R(e, [).

Equipped with the above techniques, one can not only
detect (potentially) non-compliant parts of the process
automatically, but also conveniently have a look at
the reasons for that. Clearly, the methods apply also
to processes with structured loops, when using the

Inf Syst Front

appropriately extended versions of Definitions 8 and 9.
An empirical analysis of the techniques is beyond the
scope of this paper.

6 Related work

There are two main lines of related work. First, there
exist some works on specification of compliance for
business process models, some of which also provide
checking methods. Second, a relation to work in Petri
nets arises because, to some extent, our formalism can
be compiled into such nets. We discuss the two lines of
related work in that order.

6.1 Compliance specification and checking

While the issue of compliance of business process
models with normative specifications started receiving
attention in the past few years, the study of how to
formally represent normative specifications has a long
history and a full detailed comparison with the vast
literature is out of the scope of the paper. In the
context of this paper it is worth remembering that the
use of logical clauses for normative specifications goes
back to Sergot et al. (1986), who proposed to encode
regulations and normative systems as logic programs.
More recently Farrell et al. (2005) proposed to use
Event Calculus and logic programming as executable
specifications for contracts, though the main focus is on
monitoring the performance of a contract.

Ghose and Koliadis (2007) considers an approach
similar to ours, where the tasks of a business process
model, written in BPMN, are annotated with the ef-
fects, and a technique to propagate and accumulate the
effects from a task to a successive contiguous one is pro-
posed. The technique is designed to take into account
possible conflicts between the effects of tasks and to
determine the degree of compliance of a BPMN spec-
ification. Effects are accumulated in Semantic Process
Networks (SPN), which are nested structures with set
of literals. The nested structures corresponds to OR
splits in a business process. Contrary to what we do, this
approach does not determine at design time whether
a business process is compliant. Further, the approach
cannot handle loops, and may exhibit exponential run-
time behavior (the size of the SPN may grow exponen-
tially in the size of the process).

Chopra and Sing (2007) investigates compliance in
the context of agents and multi-agent systems based
on a classification of paths of tasks. It defines patterns
according to which the behaviour of an agent conforms
to a protocol.

The approach of Ly et al. (2006, 2008) checks a no-
tion of semantic correctness that builds on annotations
to tasks as being mutually exclusive or dependent. In
the first case they cannot co-occur in a trace, in the
second case they must appear in a certain order. For
semantic correctness, the process must comply with the
annotations. This approach provides somewhat similar
features as linear temporal logic (van der Aalst et al.
2005). Contrary to our approach, compliance is lim-
ited to constraints on relationships between tasks in
a process. In fact, mutual exclusivity and dependency
constraints can be simulated using a subset of our
framework (using only preconditions/effects, with an
empty ontology). Namely, for each task we introduce
a ground literal corresponding to the task, forming the
task’s effect. To model exclusion between a and b, we
add —a to the precondition of b, and we add —b to
the precondition of a. To model that b depends on
a, we simply add a to the precondition of b. Hence
the model considered by Ly et al. (2006, 2008) can
be viewed as a special case of our framework. On the
algorithms side, (Ly et al. 2006, 2008) consider explo-
ration of execution traces, and propose techniques to
speed up compliance checking for adapted processes,
based on excluding paths that are not affected by the
changes made in the adaptation. Clearly, this is very
different from our work, which identifies polynomial-
time propagation algorithms for restricted classes of
processes.

In a number of approaches, no semantic annotations
are added to the business process model, and hence
compliance is limited to the structure and relationships
of tasks in the process. Awad et al. (2008) uses BPMN-
Q, a visual language based on BPM to query a business
process model by matching a process graph to a query
graph, to express compliance rules as queries. After
this step, the procedure retrieves BPMN sub-graphs,
that are then manipulated and reduced, to be then
transformed into formulas in temporal logic (PLPL
linear past temporal logic). The temporal logic formulas
are processed using model checking to verify compli-
ance. Similarly, Liu et al. (2007) proposes the use of
LTL (linear temporal logic) and model checking to
verify the compliance of BPEL processes. Roman and
Kifer (2007) proposes Concurrent Transaction Logic
to model the states of a workflow and presents some
algorithms to determine whether the workflow is com-
pliant with a contract. The algorithms take advantage
of features of the logic to apply graph transformations,
identifying inconsistent patters among the process
nodes. The process is compliant with a contract if the
constraints imposed by the contract do not generate
inconsistencies.

@ Springer

Inf Syst Front

A limitation of most of the approaches to compli-
ance, including the one presented herein, is that they do
not natively deal with the normative aspects of compli-
ance, i.e., whether a logical statement refers to an oblig-
ation, a permission, or a prohibition. Also, preferences
between obligations are often difficult to express. An
exception is in previous work (Governatori et al. 2006)
from one of the authors of this paper, proposing to use
FCL (Formal Contract Language). FCL is a simple rule
based logic enriched with deontic operators to specify
the obligations a process has to fulfill. Governatori
et al. (2006) argues that compliance is the relationship
between the potential execution states of a process
and the normative specifications. We have taken first
steps towards extending our work to incorporate FCL
(Governatori et al. 2008). This essentially involves ex-
tended versions of the propagation mechanisms pre-
sented herein. The extended algorithms keep track of
the history of particular facts/constraints, in order to de-
termine temporal aspects such as whether a constraint
always holds after a particular condition became true.
Contrary to the paper at hand, the algorithms are in an
early stage and have not yet been analyzed formally.

6.2 Petri nets

Petri net theory has come up with a wealth of complex-
ity results for various classes of Petri nets, including in
particular tractability results for a number of restricted
classes. One can apply some of these results to anno-
tated process graphs, via compiling such graphs into
Petri nets. However, the results obtainable in this way
are substantially weaker than what we provide herein.

How can annotated process graphs be compiled into
Petri nets? First, consider the case where there are
no ontology axioms. For this case, a straightforward
compilation exists. Encode each task as a transition,
and encode edges as places. Joins and splits can then
be encoded in a straightforward way, using the rules in
Aalst (1999a). Likewise, loops, i.e., transitions into and
out of sub-graphs, are encoded in the straightforward
fashion. Next, enumerate all facts that can be built from
the predicates and constants. Create an additional place
for each fact, as well as one for its negation. Add an
arc for each precondition/effect literal to the respective
place; similarly, encode xor/loop conditions.

If ontology axioms are present, such a compilation
is not possible, at least not in a straightforward/natural
way. Petri nets do not cater for a “minimal change
semantics” of transitions between states. Note that this
is quite fundamental. As indicated earlier, for non-
binary theories we have proved in our previous work
(Weber et al. 2008) that reasoning about state tran-

@ Springer

sitions with such a semantics is computationally hard.
To cater for this semantics, one would hence have to
somehow encode the “minimal change” into a spe-
cialized class of Petri nets with worst-case exponential
behavior, and then include an instance of that class into
every transition of the overall compiled net. If, on the
other hand, the axioms are all binary, then (as we also
show in Weber et al. 2008) a compilation preserving
the relevant properties of I-propagation (c.f. Lemma 1)
can be done by replacing task node effects with their
deductive closure (eff in our notation herein).

Apart from the process structure, we need to express
our compliance checking task in terms of Petri net
queries. Assume a grounded constraint ¥ (Cy) and an
edge e. Compliance with ¥ (Cy) at e in the annotated
process model is equivalent to the question whether,
whenever e carries a token, at least one of the places
in ¥ (Cy) (i.e., places encoding the respective literals)
carry a token as well. Hence we need to be able to test
whether a given place p implies the disjunction of a
set of other places py, ..., pr. This is a rather unusual
query for Petri nets. For the restricted case where k =
1,itis related to what has been termed “implicit places”
(see e.g. Berthelot 1987; Aalst 1999b; Garcia-Valles and
Colom 1999). An implicit (or “redundant”) place is a
place p; that always carries a token if any other place
p does, where p and p; occur together in the input
of any transition. Note that this notion refers to all
transitions and places p, while what we are interested
in is the connection (if any) between p;, ..., px and
one particular place p. It is an open question whether
techniques for detecting implicit places can be adapted
to perform this kind of test, in particular for k > 1. We
remark that the only known polynomial-time technique
to detect implicit places is the detection of “structural
implicit places” (Berthelot 1987; Aalst 1999b), which
are a special case of implicit places, hence providing for
a sound but incomplete checking method.

What we can derive are two tractable classes for the
simpler question where we only want to check whether
a constraint may be violated globally—regardless of
any edge at which that may happen. The tractability
results are based on restricting the process in a way so
that the compiled Petri net becomes free-choice (Desel
and Esparza 1995), respectively conflict-free (Howell
and Rosier 1989).° To encode a violation of the entire
constraint, we introduce a new place p, with a tran-
sition ¢ that takes and replaces tokens from all of —/

9In free-choice nets, for every two transitions either the input
places are disjoint, or identical. In conflict-free nets, every place
either is on the input of only one transition, or is on the output of
all such transitions.

Inf Syst Front

for / € ¥ (Cy), and puts a token on py. Clearly, py is
reachable iff there exists a reachable marking that has
tokens on all of the literals —/.1° We have:

(1) Say that a literal / is consumed by node n if either
| € pre(n) or —I € eff(n). If every literal / is con-
sumed by at most one task node, and no literal =/
for I € Y (Cyp) is consumed by any task node, then
the compiled Petri net is free-choice.

(2) If the process has no loops and no xor splits, and
for every literal / and task node n we have that
—[¢ eff(n), then the compiled Petri net is conflict-
free.

Both for free-choice and conflict-free Petri nets, it can
be decided in polynomial time whether there exists a
reachable marking activating a given place. Hence, (1)
and (2) identify tractable classes for global constraint
checking. Note that both of these classes restrict the
constraint to be non-contradicted, and are hence sub-
classes—rather restricted sub-classes, at that—of what
is handled as per our Theorem 1.

7 Conclusion

We have presented a formalism for annotated process
models, including a notion of clausal compliance con-
straints. We have devised low-order polynomial time
methods for checking compliance in this framework.
The checks are partly exact, partly approximate guar-
anteeing only either of soundness or completeness.

Of course, this is only a first step in exploring this
form of compliance checking. First, there are several
open questions within our current formalism. In par-
ticular: (1) Is it computationally hard to check contra-
dicted clauses in executable basic processes? (2) Is it
possible to efficiently check compliance in the presence
of effect conflicts? (3) How can we design compliance
checking methods for hard cases? As for (1), it is en-
tirely unclear to us, at this point, what the answer is. We
would guess that the problem is hard, but our attempts
to prove this have been unsuccessful, so far. As for
(2), we have drafted an I-propagation algorithm that
should work in the presence of effect conflicts, but we
have not yet verified whether the algorithm is actually
correct. If it is, the compliance checks should generalize
effortlessly, similarly as for structured loops. Regarding

190ne can extend this method to encode compliance checking
at an edge e, simply by assigning e as another input place of ¢.
However, this construction is necessarily neither free-choice nor
conflict-free, due to the competition between ¢ and the node that
consumes the control-flow tokens on e.

(3), we have made a few first experiments encoding
executability checking for the Model Checking tool
SPIN (Holzmann 2003). The results are not encourag-
ing so far, but there certainly is room for improvement,
using search enhancements and/or alternative encoding
methods.

Apart from this kind of issues, the formalism lacks
expressiveness in several respects. On the process mod-
eling side, things that cannot be adequately modeled
are, e.g., data content, or temporal aspects of the behav-
ior of activities. For data content, all we can currently
do is to annotate predicates representing qualitative
properties of the data, e.g., whether or not a set of
numbers is sorted, or whether a number is greater than
0. Regarding temporal behavior, our model is limited
to what is encoded in the control-flow; for example,
quantitative measures of how long an activity takes can
not be expressed.

There clearly is also a lack of expressiveness in the
model of compliance rules. Clausal constraints are a
rather blunt way to state regulations, which (just for
example) do not cater for preferences (“if you can’t do
A, then at least do B”). Richer notions of compliance
rules exist, e.g., the FCL (Governatori et al. 2006)
formalism mentioned already in Section 6. To cater
for such compliance notions, beside an extension to
deal with preferences between obligations, our formal-
ism must be extended with, e.g., ways of expressing
resource allocations and temporal aspects.

At the time of writing, beyond our aforementioned
initial work on FCL (Governatori et al. 2008), it is
not clear to us how any of the mentioned extensions
should best be done. For certain, such extensions are
not trivial. Resource allocations may to some extent
be expressible in terms of semantic annotations. To
deal with data content, a careful extension to allow
(some) arithmetic could be quite useful. Regarding
temporality, a lot of added value might lie in the simple
extension that annotates each activity with a constant
execution time; a fruitful direction for such a setting
may be to extend I-propagation with time windows
expressing when the literals will be necessarily true. As
best we can tell, more complex notions of temporal-
ity will add a whole new level of complexity to both
the formalism and the algorithms required for dealing
with it.

Acknowledgements This work has in part been funded
through NICTA and through the SUPER project. SUPER
(FP6- 026850, http://www.ip-super.org) is funded through the
European Union’s 6th Framework Programme, within Informa-
tion Society Technologies (IST) priority. NICTA is funded by
the Australian Government as represented by the Department

@ Springer

http://www.ip-super.org

Inf Syst Front

of Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of
Excellence program.

References

Aalst, W. (1999a). Formalization and verification of event-
driven process chains. Information and Software Technol-
ogy, 41(10), 639-650.

Aalst, W. (1999b). Interorganizational workflows: An approach
based on message sequence charts and petri nets. Systems
Analysis Modelling Simulation, 34(3), 335-367.

Ankolekar, A., Burstein, M., Hobbs, J. R., Lassila, O., Martin,
D., McDermott, D., et al. (2002). DAML-S: Web service
description for the semantic web. In ISWC.

Aspvall, B., Plass, M., & Tarjan, R. (1979). A linear-time al-
gorithm for testing the truth of certain quantified boolean
formulas. Information Processing Letters, 8, 121-123.

Awad, A., Decker, G., & Weske, M. (2008). Efficient compliance
checking using bpmn-q and temporal logic. In M. Dumas,
M. Reichert, & M. C. Shan (Eds.), Business process manage-
ment, 6th international conference, BPM 2008. Lecture notes
in computer science (Vol. 5240, pp. 326-341). New York:
Springer.

Baader, F., Lutz, C., Milicic, M., Sattler, U., & Wolter, F. (2005).
Integrating description logics and action formalisms: First
results. In AAAL

Berthelot, G. (1987). Transformations and decompositions of
nets. In W. Brauer, W. Reisig, & G. Rozenberg (Eds.), Ad-
vances in petri nets 1986 part I: Petri nets, central models and
their properties. LNCS (Vol. 254, pp. 360-376). New York,
Springer.

Chopra, A. K., & Sing, M. P. (2007). Producing compliant interac-
tions: Conformance, coverage and interoperability. Declar-
ative agent languages and technologies IV. In M. Baldoni,
& U. Endriss (Eds.), LNAI (Vol. 4327, pp. 1-15). Berlin:
Springer.

Coalition, T. O. S. (2003). OWL-S: Semantic markup for web ser-
vices. In M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
S. Mcllraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne,
E. Sirin, N. Srinivasan, K. Sycara & D. Martin (Eds.),
OWL-S: Semantic Markup for Web Services. OWL-S 1.1.
http://www.daml.org/services/owl-s/1.1/. Version 1.1

Desel, J., & Esparza, J. (1995). Free choice Petri nets. New York,
NY, USA: Cambridge University Press.

Farrell, A., Sergot, M., Sallé, M., & Bartolini, C. (2005). Using the
event calculus for tracking the normative state of contracts.
International Journal of Cooperative Information Systems,
14(2-3), 99-129.

Fensel, D., Lausen, H., Polleres, A., Stollberg, M., Roman, D., de
Bruijn, J., et al. (2006). Enabling semantic web services: The
web service modeling ontology. New York: Springer.

Garcia-Valles, F., & Colom, J. (1999). Implicit places in net sys-
tems. In Petri nets and performance Models, 1999. Proceed-
ings. The 8th international workshop (pp. 104-113).

Ghose, A., & Koliadis, G. (2007). Auditing business process com-
pliance. In Service Oriented Computing, ISOC 2007. LNCS
(pp- 169-180). New York: Springer.

Giacomo, G. D., Lenzerini, M., Poggi, A., & Rosati, R. (2006).
On the update of description logic ontologies at the instance
level. In AAAL

Governatori, G., Hoffmann, J., Sadiq, S., & Weber, I. (2008). De-
tecting regulatory compliance for business process models

@ Springer

through semantic annotations. In BPD-08: 4th international
workshop on business process design.

Governatori, G., & Milosevic, Z. (2006). A formal analysis of a
business contract language. International Journal of Cooper-
ative Information Systems, 15(4), 659-685.

Governatori, G., Milosevic, Z., Sadiq, S. (2006). Compliance
checking between business processes and business con-
tracts. In P. C. K. Hung (Ed.), 10th International Enterprise
Distributed Object Computing Conference (EDOC 20006)
(pp- 221-232). IEEE Computing Society. doi:10.1109/
EDOC.2006.22.

Holzmann, G. (2003). The spin model checker—Primer and refer-
ence manual. Reading: Addison-Wesley.

Howell, R., & Rosier, L. (1989). Problems concerning fairness
and temporal logic for conflict-free petri nets. Theoretical
Computer Science, 64(3), 305-329.

Liu, Y., Miiller, S., & Xu, K. (2007). A static compliance-checking
framework for business process models. IBM Systems Jour-
nal, 46(2), 335-362.

Lutz, C., & Sattler, U. (2002). A proposal for describing services
with DLs. In DL.

Ly, L. T., Rinderle, S., & Dadam, P. (2006). Semantic correctness
in adaptive process management systems. In BPM06: Proc.
4th int’l conf. on business process management (pp. 193-208).
Vienna, Austria.

Ly, L. T., Rinderle, S., & Dadam, P. (2008). Integration and
verification of semantic constraints in adaptive process man-
agement systems. Data and Knowledge Engineering, 64(1),
3-23.

OASIS (2007). Web services business process execution lan-
guage version 2.0. http://www.ibm.com/developerworks/
webservices/library/ws-bpel/.

OMG (2008). Business process modeling notation—BPMN 1.1.
OMBG specification. http://www.bpmn.org/.

Roman, D., & Kifer, M. (2007). Reasoning about the behaviour
of semantic web services with concurrent transaction logic.
In VLDB (pp. 627-638).

Sadiq, S., Governatori, G., & Namiri, K. (2007). Modelling con-
trol objectives for business process compliance. In Proc. 5th
international conference on business process management.
Brisbane, Australia.

Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F.,
Hammond, P., & Cory, H. (1986). The british nationality
act as a logic program. Communications of the ACM, 29(5),
370-386.

van der Aalst, W. M. P., de Beer, H. T., & van Dongen, B. F.
(2005). Process mining and verification of properties: An
approach based on temporal logic. OTM conferences (1).
In R. Meersman, Z. Tari, M. S. Hacid, J. Mylopoulos,
B. Pernici, O. Babaoglu, et al. (Eds.), Lecture notes in com-
puter science (Vol. 3760, pp. 130-147). New York: Springer.

van der Aalst, W. M. P., & van Hee, K. (2002). Work-
flow management: Models, methods, and systems
(cooperative information systems). Cambridge: MIT.
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-
20&path=ASIN/0262011891.

Vanhatalo, J., Volzer, H., Leymann, F. (2007). Faster and more
focused control-flow analysis for business process mod-
els though sese decomposition. In B. Krdmer, K. Lin,
P. Narasimhan (Eds.), 5th international conference on
service-oriented computing (ICSOC). Lecture notes in com-
puter science (Vol. 4749, pp. 43-55). Berlin: Springer.

Weber, 1., Hoffmann, J., Mendling, J. (2008). Semantic busi-
ness process validation. In Proceedings of the 3rd interna-
tional workshop on semantic business process management
(SBPM’0S).

http://www.daml.org/services/owl-s/1.1/
http://dx.doi.org/10.1109/EDOC.2006.22
http://dx.doi.org/10.1109/EDOC.2006.22
http://www.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.bpmn.org/
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20&path=ASIN/0262011891
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20&path=ASIN/0262011891

Inf Syst Front

Winslett, M. (1988). Reasoning about actions using a possible
models approach. In AAAL

zur Muehlen, M., Indulska, M., Kemp, G. (2007). Business
process and business rule modeling languages for compli-
ance management: A representational analysis. In Proc.
26th international conference on conceptual modelling -
ER2007 - tutorials, posters, panels and industrial contribu-
tions. Auckland, New Zealand.

Jorg Hoffmann is a Senior Researcher at SAP Research in
Karlsruhe, Germany. He holds a Masters (1999) and a PhD
in Computer Science (2002) from the University of Freiburg,
Germany, and a Habilitation in Computer Science (2009) from
the University of Innsbruck, Austria. Jorg’s research interests
are in Artificial Intelligence, Model Checking, and Semantic
Technologies. He has published more than 80 scientific papers.
He received the 2002 ECCALI Dissertation Award, the 2005 Best
Paper Prize of the Journal of Artificial Intelligence Research
(JAIR), and the 2004 and 2007 Best Paper Awards of the In-
ternational Conference on Automated Planning and Scheduling
(ICAPS). Jorg is an Associate Editor of JAIR, and Conference
Chair of ICAPS 2010.

Ingo Weber is a Senior Research Associate at the University
of New South Wales in Sydney, Australia. Prior to UNSW,
Ingo worked for SAP Research in Karlsruhe, Germany, and in
Brisbane, Australia. His research interests are in service aggrega-
tion and in applying intelligent technologies to Business Process
Management. Ingo received a Diploma degree from Universitét
Karlsruhe (TH) in 2006 and a Master of Science degree from the
University of Massachusetts, Amherst in 2005, both in Computer
Science.

Guido Governatori received his Ph.D. in Computer Science and
Law at the University of Bologna in 1997. Since then he has held
academic and research positions at Imperial College, Griffith
University, Queensland University of Technology, the University
of Queensland, and NICTA. He has published more than 160
scientific papers in Logic, Artificial Intelligence, and Database
and Information Systems. His current research interests include
modal and nonclassical logics, defeasible reasoning and its appli-
cation to normative reasoning and e-commerce, agent systems,
and business process modeling for regulatory compliance. He
is a member of the Editorial Board of Artificial Intelligence
and Law.

@ Springer

	On compliance checking for clausal constraints in annotated process models
	Abstract
	Introduction
	Annotated business processes and constraint bases
	Annotated business processes
	Control-flow
	Semantic annotations

	Constraints bases

	I-propagation
	Compliance checking
	Exact checks for non-contradicted clauses
	Approximate checks for contradicted clauses

	Diagnosis
	Tracing literals
	Tracing non-compliance

	Related work
	Compliance specification and checking
	Petri nets

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

